
2024/01/25 23:03 1/5 Secure Development and System Acquisition

Nested Knowledge - https://wiki.nested-knowledge.com/

Secure Development and System Acquisition

I. Purpose

This policy ensures that development environments are secure and encourages the use of secure
coding and development practices. Security needs to be considered at all stages of the development
lifecycle from design through to implementation.

Specific coding languages and development tools have different vulnerabilities and require different
“hardening” techniques; it is important that these are identified and developers are made aware of
their responsibilities to follow them.

II. Scope

These standards apply to all persons involved in the acquisition, development and maintenance of
Nested Knowledge's IT environment and are applicable to all Nested Knowledge systems, including
applications/systems developed for the Internet.

III. Secure Development Policy

Restrictions on Changes to Software Packages

Modifications to software packages need to be discouraged, limited to necessary changes and all
changes should be strictly controlled. Vendor supplied software packages are designed for the mass-
market and are generally not designed for organizations making their own changes to them. Usually,
the ability to make such changes is locked out by the vendor and customization limited to within the
package.

Open-Source Software

Where open-source software is used, it is generally possible for changes to be made by the
organization, however, this should be restricted and controlled to ensure that the changes made do
not have an adverse impact on the internal integrity or security of the software.

Secure Development Environment

Development environments need to be protected against malicious or accidental development and
update of code that may create vulnerabilities or compromise confidentiality. Production data is only
used in development when a data-dependent bug arises; in these cases, only the relevant data is
made available to the development environment, and it is short-lived, being made inaccessible once
the issue is resolved.



Last update: 2024/01/25 23:02 wiki:policies:dev https://wiki.nested-knowledge.com/doku.php?id=wiki:policies:dev

https://wiki.nested-knowledge.com/ Printed on 2024/01/25 23:03

Development environments are independent from production, lacking configuration, credentials, and
network access to Production services and data.

Outsourced Development

Nested Knowledge source code is only accessible to and developed by internal employees.

Supplier Adherence to SDLC

Nested Knowledge employees develop all application code. External platforms (e.g. AWS) may
provide architecture, orchestrate deployment of, and execute application code. External libraries (e.g.
OSS) are consumed by application code as modules. External providers offer data to code, most
typically in the form of an API. External platforms, providers, and libraries are verified with the
following:

A review of technical documentation
Does the platform/library maintain a release history?
Does the platform/library publish their development strategies? Does it conform to typical
SDLC standards?
Does the solution advertise itself as production ready?

A review of update / release history
Does the supplier make regular updates for security patches

Automate scanning for existing vulnerabilites using NPM vulnerability scanning, the
pypi Safety DB, and GitHub vulnerability monitoring.

Does the supplier actively maintain the solution?
Does the supplier follow a standardized release versioning system? (e.g. SemVer)

Are there reports of major version changes that weren't reported as such?
Does the solution include a public issue tracker?

Are issues (bugs & security vulnerabilities) addressed quickly?
Does the solution have a policy and/or history of disclosing vulnerabilities and breaches?
When available, code & version history review.

Do all commits to the repository leave it in deployable condition?
Are all commits reviewed & verified by a maintainer / peer?

Is code well structured & organized? Does it compile? Does it have/pass a linter?
Are new features / patches developed on branches or external to the main deployment
branch?
Does the solution minimize & verify its dependencies?

Per these criteria, the supplier is assessed for risk in inclusion as a dependency to application code.

Testing Procedures

Our software is tested & verified in two environments, development & production.

In development, code is tested via the following methods:

Automated unit tests, integration tests, functional tests, and linters
Unit tests cover shared modules and core functions (e.g. authorization logic)



2024/01/25 23:03 3/5 Secure Development and System Acquisition

Nested Knowledge - https://wiki.nested-knowledge.com/

Functional tests cover our most critical features with complex input/output behaviors (e.g.
literature search import)
Client and frontend servers are covered by linters to identify common errors and improve
code quality
All code changes must pass tests and linters prior to acceptance.

Peer review & testing
The reviewing developer reads code, identifying corner cases, assessing security
compliance, and verifying correctness
A reviewing developer and product manager must verify functionality before any code
change is accepted.

In production, new changes in the release are verified by a developer and product manager upon
release. If a feature does not function as intended, the release is immediately rolled back and only
proceeds once a patch is reviewed and accepted.

System Design and Architecture

The Nested Knowledge client application is served by an application server and hydrated by an API
server; both of these servers run behind a load balancer. The API server communicates with the
Search and ML backend services as well as the database. Certain functions of backend services
communicate with external (public) APIs. The frontend servers, services, and database all run in a
Virtual Private Cloud (VPC) for network isolation. The frontend load balancers are exposed to receive
requests from the public internet and are protected with a WAF using AWS's Core Ruleset. The client
and server applications communicate with an external service, Auth0, for authentication; all
communications with Auth0 are encrypted.

https://wiki.nested-knowledge.com/lib/exe/detail.php?id=wiki%3Apolicies%3Adev&media=wiki:policies:nk_architecture_updated.png


Last update: 2024/01/25 23:02 wiki:policies:dev https://wiki.nested-knowledge.com/doku.php?id=wiki:policies:dev

https://wiki.nested-knowledge.com/ Printed on 2024/01/25 23:03

Security Requirements

General

All application data are stored and processed inside the VPC. Data leaving the VPC are either
encrypted to the authenticated & authorized client, or, in the case of external providers contain
minimal & nonsensitive information (e.g. DOIs for unpaywall, search strings for PubMed). HTTP traffic
is served over HTTPS (redirect required); email traffic (through AWS SES) is encrypted from
application to sender (TSL), and sender to receiver (TSL). Within the VPC, communications between
the database and all services are encrypted.

Authentication

Nested Knowledge does not manage user passwords or authentication (handled by Auth0 and Auth0
Lock). All communications with Auth0 from the client are encrypted (TSL), ensuring passwords are not
communicated in plain text. Passwords stored by Auth0 are similarly salted & encrypted (bcrypt).
Communications relayed by the client are similarly encrypted & RSA signed.

Software Applications on NK-Owned Devices

Our application profile in the Business Continuity Plan describes the criticality of software applications
used by Nested Knowledge employees on employee-owned devices.

Vulnerability and Patch Management

Nested Knowledge uses automated scanning to identify potential vulnerabilities in our operating
environment and software dependencies. The risk of a vulnerability is assessed using the CVSS
framework.

Our cloud services provider (AWS) provides automated vulnerability reports on operating systems &
databases running the application. Application vulnerability scanning is performed by
SecurityScorecard on an ongoing basis. Alerts derived from these reports are addressed by release
engineers:

The applicability & risk of the vulnerability is verified and added to our issue tracker. If a
vulnerability is deemed nonapplicable or low severity, it is prioritized amongst other
development initiatives. If medium or high severity, the vulnerability is given highest priority, to
be addressed by an engineer with next availability.
The viability of the recommended patch is assessed.

Bug fix / minor version patches may be applied with minimal testing.
Larger patches requiring updates to our application must pass through our code review
process. Any high risk vulnerability is given highest priority in our queue, including
dropping actively developed features to procure compatibility for the patch.

https://auth0.com/
https://wiki.nested-knowledge.com/doku.php?id=wiki:policies:disaster#application_profile
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss


2024/01/25 23:03 5/5 Secure Development and System Acquisition

Nested Knowledge - https://wiki.nested-knowledge.com/

The patch is applied during the next scheduled release window. If a vulnerability is deemed high
severity, it triggers an immediate release upon review completion.

Our dependency management tools (NPM, pip, apt-get) provide automated vulnerability reporting &
patch alerts. Every build in our development environment produces a vulnerability report among
dependencies. Alerts derived from these reports are addressed by developers.

The applicability & risk of the vulnerability is verified. If a vulnerability is deemed nonapplicable
or low severity, it is added to our issue tracker. If applicable or medium or high severity, the
vulnerability is assigned to an engineer immediately.
The viability of the recommended patch is assessed. Developers will modify the application
code as needed to accommodate the patch (e.g. updating to a new API or changing a
configuration). All changes are tested and passed through code review.

If the vulnerability lacks a patch, the team may:
Contribute an upstream patch, for open source dependencies.
Mitigate code paths triggering the vulnerability and begin researching alternative
dependencies.
Replace or remove the dependency, with application code changes

The dependency and/or code change is deployed during the next scheduled release window. If a
vulnerability is deemed high severity, it triggers an immediate release upon review completion.

Revision History

This policy will be updated at least on an annual basis or when a signficant change occurs.

Author Date of Revision/Review Comments/Description
K. Cowie 01/24/2023 Reviewed
K. Holub 03/30/2023 Updating vulnerability scanning to include SecurityScorecard
K. Kallmes 11/19/2021 Draft approved
P. Olaniran 9/22/2022 Minor Revisions

Return to Policies

From:
https://wiki.nested-knowledge.com/ - Nested Knowledge

Permanent link:
https://wiki.nested-knowledge.com/doku.php?id=wiki:policies:dev

Last update: 2024/01/25 23:02

https://wiki.nested-knowledge.com/doku.php?id=wiki:policies
https://wiki.nested-knowledge.com/
https://wiki.nested-knowledge.com/doku.php?id=wiki:policies:dev

	Secure Development and System Acquisition
	I. Purpose
	II. Scope
	III. Secure Development Policy
	Restrictions on Changes to Software Packages
	Open-Source Software
	Secure Development Environment
	Outsourced Development
	Supplier Adherence to SDLC
	Testing Procedures


	System Design and Architecture
	Security Requirements
	General
	Authentication


	Software Applications on NK-Owned Devices
	Vulnerability and Patch Management
	Revision History


