Manuscript

Video

Manuscript Editor

The Manuscript Editor page allows your team to draft a manuscript within the NK software!

1. Navigate to "Manuscript Editor"

2．Start Typing

You can insert headings，bullet points，and images．

Show Table of Contents

Download（4）

ABSTRACT

Background：Balloon guide catheters（BGC）are designed to induce flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke due to large vessel occlusion，and have been associated with improved clinical and angiographic outcomes．We reported the results of a systematic review and meta－analysis evaluating the relative technical and clinical outcomes associated with BGC vs．non－BGC approaches．

Methods：A systematic review of clinical literature using the PubMed database was undertaken to identify studies published between 2010 and 2021 reporting the use of BGC versus non－BGC approaches for stroke treatment．Data collected included complete recanalization（Thrombolysis in Cerebral Infarction，TICI），first pass effect（FPE）TICI 3，puncture－to recanalization time，number of endovascular attempts，distal embolization， symptomatic intracerebral hemorrhage（sICH）， 90 －day modified Rankin Scale（mRS）0－2，and 90－day mortality．Subgroup analyses assessed the impact of treatment device（stent－retrievers，contact aspiration，combination therapy，and not－specified／other）．A random effects model was fit for each outcome measure．
Results：Fifteen studies were included．Compared to non－BGC approaches，patients treated with BGCs had higher odds of TICI 3 （ $\mathrm{OR}=1.57$［ 95% Cl：1．08；2．29］）and FPE TICI3（OR＝3．63［95\％Cl：2．34； 5.62$]$ ），reduced puncture－ to－revascularization time（ $\mathrm{MD}=-7.8$［ 95% CI：$-13.3 ;-2.2$ ］），fewer endovascular attempts（ $\mathrm{MD}=-0.47$［ $95 \% \mathrm{Cl}:-0.68$ ；－ 0.26$]$ ］），reduced odds of sICH（ $\mathrm{OR}=0.66$［95\％CI： 0.51 ； 0.86$]$ ）and distal emboli（ $\mathrm{OR}=0.34$［ $950.17 ; 0.71]$ ），higher odds of 90 －day mRS $0-2$（ $\mathrm{OR}=1.51$［ 95% Cl：1．27；1．79］），and reduced odds of mortality（ $\mathrm{OR}=0.69$［ 95% Cl： $0.57 ; 0.82]$ ）．

Conclusions：BGCs yield superior technical and clinical outcomes while reducing patient complications．

Introduction

Balloon guide catheters（BGC）provide flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke（AIS）due to large vessel occlusion（LVO）．${ }^{1-3}$ BGCs may be used as part of the first－line treatment strategy，either in combination with an aspiration catheter or stent retriever alone，or as part of combination procedures involving multiple techniques．${ }^{4}$ BGCs are hypothesized to promote better recanalization and clinical outcomes，but their comparative efficacy vs．non－BGC approaches remains controversial． 5,6

Prior meta－analyses of non－randomized studies have demonstrated superior clinical and angiographic outcomes associated with the use of BGCs． 7.8 In this study，we performed a systematic review and meta－analysis of multi－ arm clinical studies reporting outcomes of patients treated with MT using BGCs vs．non－BCC procedures to evaluate their relative technical and clinical performance．

Methods

Literature search and study selection

Select＂Show Table of Contents＂to add a table of contents automatically generated based on headings．

At this time，only one person can edit the manuscript at a time．If multiple users make edits，their changes may be overwritten．．．．Don＇t worry，we plan to support collaborative editing in the future and you can track．our progress

Manuscript editor saves automatically．When you are done writing，export as a Word document in 1－ click．

Manuscript：Balloon Guide Catheter SR／MA	？
Show Table of Contents	Download（4）
H B I U S 決決回囲國	ち +

Abstract

Background：Balloon guide catheters（BGC）are designed to induce flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke due to large vessel occlusion，and have been associated with

 improved clinical and angiographic outcomes．We reported the results of a systematic review and meta－analysis evaluating the relative technical and clinical outcomes associated with BGC vs．non－BGC approaches．Methods：A systematic review of clinical literature using the PubMed database was undertaken to identify studies published between 2010 and 2021 reporting the use of BGC versus non－BGC approaches for stroke treatment．Data collected included complete recanalization（Thrombolysis in Cerebral Infarction，TIC），first pass effect（FPE）TIC 3，puncture－to recanalization time，number of endovascular attempts，distal emboization， symptomatic intracerebral hemorrhage（sich）， 90 －day modified Rankin Scale（mRS）0－2，and 90－day mortality．Subgroup analyses assessed the impact of treatment device（stent－retrievers，contact aspiration，combination therapy，and not－specified／other）．A random effects model was fit for each outcome measure．
Results：Fifteen studies were included．Compared to non－BGC approaches，patients treated with BCCs had higher odds of TICI 3 （ $\mathrm{OR}=1.57$［95\％Cl：1．08；2．29］）and $\mathrm{FPE} \mathrm{TICI3}$（OR＝3．63［95\％CI： $2.34 ; 5.62$ ］），reduced puncture－ to－revascularization time（ $M D=-7.8$［ $95 \% \mathrm{Cl}:-13.3 ;-2.2]$ ），fewer endovascular attempts（ $\mathrm{MD}=-0.47$［ $95 \% \mathrm{Cl}:-0.68 ;-0.26]$ ），reduced odds of sICH（ $\mathrm{OR}=0.66$［95\％Cl： $0.51 ; 0.86]$ ）and distal emboli（ $\mathrm{OR}=0.34$［ 950.17 ； 0.71 ］），higher odds of 90 －day mRS $0-2$（ $O R=1.51$［ 95% Cl：1．27；1．79］），and reduced odds of mortality（ $\mathrm{OR}=0.69$［ $95 \% \mathrm{Cl}: 0.57 ; 0.82]$ ）．

Conclusions：BGCs yield superior technical and clinical outcomes while reducing patient complications．

Introduction

Balloon guide catheters（BGC）provide flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke（AIS）due to large vessel occlusion（LVO）．${ }^{1-3}$ BGCs may be used as part of the first－line treatment strategy，either in combination with an aspiration catheter or stent retriever alone，or as part of combination procedures involving multiple techniques．${ }^{4}$ BGCs are hypothesized to promote better recanalization and clinical outcomes，but their comparative efficacy vs．non－BGC approaches remains controversial．${ }^{5,6}$

Prior meta－analyses of non－randomized studies have demonstrated superior clinical and angiographic outcomes associated with the use of BGCs． 7,8 In this study，we performed a systematic review and meta－analysis of multi－ arm clinical studies reporting outcomes of patients treated with MT using BGCs vs．non－BCC procedures to evaluate their relative technical and clinical performance．

Methods

Literature search and study selection

3．Insert Updatable Tables

To insert an updatable table，select the table icon with the plus sign．When the included studies and collected data change，the tables will update accordingly．

Manuscript：Balloon Guide Catheter SR／MA

ABSTRACT

Background：Balloon guide catheters（ BGC ）are designed to induce flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke due to large vessel occlusion，and have been associated with improved clinical and angiographic outcomes．We reported the results of a systematic review and meta－analysis evaluating the relative technical and clinical outcomes associated with BCC vs．non－ BCC approaches．
Methods：A systematic review of clinical literature using the PubMed database was undertaken to identify studies published between 2010 and 2021 reporting the use of BGC versus non－BGC approaches for stroke treatment．Data collected included complete recanalization（Thrombolysis in Cerebral Infarction，TICI），first pass effect（FPE）TICI 3，puncture－to recanalization time，number of endovascular attempts，distal embolization symptomatic intracerebral hemorrhage（sICH），90－day modified Rankin Scale（mRS）0－2，and 90－day mortality．Subgroup analyses assessed the impact of treatment device（stent－retrievers，contact aspiration，combination symptomatic intracerebral hemorrhage（sich），go－day modified Rankin Scale（mRS）0－2，and

Results：Fifteen studies were included．Compared to non－BGC approaches，patients treated with BGCs had higher odds of TICI 3 （OR＝1．57［95\％Cl：1．08；2．29］）and FPE TICI 3 （OR＝3．63［95\％Cl：2．34；5．62］），reduced puncture－ to－revascularization time（ $\mathrm{MD}=-7.8$［ $95 \% \mathrm{Cl}:-13.3 ;-2.2]$ ），fewer endovascular attempts（ $\mathrm{MD}=-0.47$［ $95 \% \mathrm{Cl}:-0.68 ;-0.26]$ ］，reduced odds of sICH（ $\mathrm{OR}=0.66$［ 95% Cl： 0.51 ； 0.86$]$ ）and distal emboli（ $\mathrm{OR}=0.34$［ $950.17 ; 0.71$ ］），higher odds of 90 －day mRS 0－2（OR＝1．51［95\％Cl：1．27；1．79］），and reduced odds of mortality（ $\mathrm{OR}=0.69$［ 95% Cl： $0.57 ; 0.82$ ］）．

Conclusions：BGCs yield superior technical and clinical outcomes while reducing patient complications．

Introduction

Balloon guide catheters（BCC）provide flow arrest during mechanical thrombectomy（MT）procedures for acute ischemic stroke（AIS）due to large vessel occlusion（LVO）．${ }^{1-3}$ BGCs may be used as part of the first－line treatment strategy，either in combination with an aspiration catheter or stent retriever alone，or as part of combination procedures involving multiple techniques．${ }^{4}$ BGCs are hypothesized to promote better recanalization and clinical outcomes，but their comparative efficacy vs．non－BGC approaches remains controversial． 5 ，${ }^{5}$
Prior meta－analyses of non－randomized studies have demonstrated superior clinical and angiographic outcomes associated with the use of BGCs． 7,8 In this study，we performed a systematic review and meta－analysis of multi－ arm clinical studies reporting outcomes of patients treated with MT using BGCs vs．non－BGC procedures to evaluate their relative technical and clinical performance．

Methods

Literature search and study selection

Example：

Insert Updatable Table

Updatable tables allow you to define tables populated with living data from this Nest，meaning the table will update when records are updated，added，or deleted．Specify the type of data，columns，and filters for your table：

Table of：

Tagged	BGC plus Stent－triever X

Columns：

Insert Updatable Table

Updatable tables allow you to define tables populated with living data from this Nest, meaning the table will update when records are updated, added, or deleted. Specify the type of data, columns, and filters for your table:

Table of:

Filter to:
\square
Intervention BGC \times

Columns:

\square
Column Intervention X Column Intervention X Column F FPE TICI 2b-3 (n/N) X

```
Close
```

From:
https://wiki.nested-knowledge.com/ - Nested Knowledge
Permanent link:
https://wiki.nested-knowledge.com/doku.php?id=wiki:synthesis:manuscript\&rev=1638665985
Last update: 2021/12/05 00:59

